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1 Introduction

The paper1 proposes an improvement over the Variational Auto-Encoder (VAE) architec-
ture2,3 by explicitly modelling sparsity in the latent space with a Spike and Slab prior
distribution and drawing ideas from sparse coding theory. The main motivation be-
hind their work lies in the ability to infer truly sparse representations from generally
intractable non-linear probabilistic models, simultaneously addressing the problem of
lack of interpretability of latent features. Moreover, the proposed model improves the
classification accuracy using the low-dimensional representations obtained, and signif-
icantly adds robustness while varying the dimensionality of latent space.

The authors of the paper derive an analytic expression for the evidence lower bound
(ELBO) of the VAE model by choosing the sparsity-inducing Spike and Slab prior distri-
bution for the latent variables, which is later optimizedusing standard gradientmethods
to recover the encoding and decoding mappings. After training on well-known datasets,
the Variational Sparse Coding (VSC) model is able to recover sparse, informative and in-
terpretable representations given a fixed number of latent dimensions, which authors
claim to be advantageous over standard VAE representations for classification tasks.

In this reproducibility report we study in detail the VSC model to implement the ar-
chitectures described in the paper, run the experiments (detailed in Section 4), provide
insights and suggestions for replicating results, and analyze the results obtained in com-
parison with the ones reported by the authors of the paper (Section 6). Furthermore, we
addmodifications to improve themodel performance and propose some possible future
work directions (Section 7).

2 Related Work

Variational Auto-Encoders have been extensively studied4 andwidelymodified in the re-
cent years in order to encourage certain behavior of the latent space variables5,6,7 or to
be further applied for particular tasks8,9,10,11. Regarding the sparsity of the latent space
for VAEs, previous work in the literature has focused on either explicitly incorporating a
regularization term to benefit sparsity12, or fixing a prior distribution, such as Rectified
Gaussians by13, discrete distributions by14, student-t distribution for Variational Infor-
mation Bottleneck by15 and Stick Breaking Processes by5.
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Nonetheless, previous works have not allowed to explicitly model sparsity by incorpo-
rating linear sparse coding to non-linear probabilistic generative models. The paper we
aim to reproduce offers a connection between both areas through the Spike-and-Slab
distribution, chosen as a prior distribution for the latent variables. Although this dis-
tribution has been commonly used for modeling sparsity16, it has rarely been applied
to generative models. Moreover, since sparse coding imposes efficient data represen-
tations17,18,19, the authors demonstrate qualitatively how the sparse learned representa-
tions can capture subjectively understandable sources of variation.

Following the line of latent features interpretability, we can observe that the authorsʼ
idea is closely related to the Epitomic VAE by20, which learns the latent dimensions the
recognition function should exploit. Many recent approaches, mostly related to disen-
tangled representations, such as β-VAE21,22 or Factor-VAE by23, focus on learning inter-
pretable factorized representations of the independent data generative factors via gen-
erative models. However, these approaches although explicitly induce interpretation of
the latent features, do not directly produce sparse representations in contrast with the
VSC model. Hence, the authorsʼ aim is to develop a model that directly induces sparsity
in a continuous latent space, which in addition, results into a higher expectation of in-
terpretability in large latent spaces.

Ourwork, as part of the reproducibility challenge, will contribute in clarifying the imple-
mentation details of the VSC model, corroborate the results, and assess a few concerns
of the reviewers by adding small modifications to the model and experiments based on
the insights obtained during the reproducibility challenge.

3 Target Questions

In order to assess the reproducibility of the paper and validate its conclusions, the main
questions we will focus our efforts on answering are:

• Can we actually validate the reported results?

• Is it possible to interpret the latent features learned by the VSC model?

• How the proposed model can be further improved?

4 Experimental Methodology

Within the experiments described in the paper, we focus on replicating the precise set-
tings for:

• ELBO evaluation: to observe ELBO drop while optimizing the model loss.

• Classification Performance: to use the learned presentations for classification tasks.

• Interpretation of sparse codes: to visually inspect the role of learned latent features.

• Visualization / Traversal of Latent Space: to qualitatively evaluate the reconstructed
images.

We found that the paper was well written and moderately amenable for reproduction.
Although the authors did notmake the code available, writing the code from scratchwas
not as challenging as we anticipated. Thus, in this section, we describe in detail how
our implementation of the model was carried out, clarify the adjustments considered
and display the results obtained.
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4.1 Datasets

We test the VSC model in two commonly used image datasets: MNIST24 and Fashion-
MNIST25, both composed of 28×28 grey scale images of handwritten digits and pieces of
clothing respectively. Following the paper description, we run most of the experiments
with these datasets. In addition to this, CelebA faces26 dataset was used to showcase
qualitative results. We include in our repository routines to download and preprocess
the datasets.

Observations —

• For the CelebA dataset, we used a subset of 100K samples for training and 20K
samples for testing, which were center cropped and downsampled to a size of 32×
32 using all 3 RGB channels, as described in the paper.

• We applied a 0-1 Min-Max scaling to all the datasets. We observed that normaliz-
ing vectors to unitary norm, as the paper suggests, produced lower quality image
reconstruction.

4.2 Implementation Details

We decided to replicate the architecture described in the paper using PyTorch27. Our
repository includes a few instructions on how to install and set up all the required li-
braries needed for running our implementation. We organize the code on scripts for
each model architecture, as well as Jupyter Notebooks for preprocessing, running ex-
periments and visualization.

In order to establish a valid benchmark, we implemented the VAE architecture from3,
which, in the sameway as the Variational Sparse Coding (VSC)model, was implemented
by an encoder and a decoder function, both parametrized as fully connected neural
networks. The architecture, implemented from scratch, allows to explicitly define the
hyperparameters of the model (e.g., hidden layer dimension, latent space dimension,
learning rate, epochs, batch size, etc.) and is highly modular, to encourage future mod-
ifications.

For the loss function, the authors used a continuous relaxation for the discrete binary
component in the reconstruction term of the ELBO and applied the reparametrization
trick28 for the Spike and Slab distribution to obtain a differentiable expression which
can be optimized. Implementing this code was straightforward, our implementation
forces the parameter c to increase by 0.001 per iteration to benefit convergence stability.

We stored all the checkpoints for the trained models, for reproducibility purposes, to-
gether with the training logs which can be visualized using TensorBoard.

Observations —

• One of the missing details in the paper was the batch size. We assumed it to be 32
samples per batch, due to our memory restrictions.

• The original paper suggests using 20, 000 iterations for model training using the
ADAM optimizer29 with learning rate ranging between 0.001 and 0.01. In partic-
ular, we implemented the VSC model in a way that the number of epochs is one
hyperparameter. Thus, we fixed the number of epochs to be equivalent the num-
ber of iterations given by the paper; i.e., forMNIST and Fashion-MNISTwe trained
the VSC model for 11 epochs with a batch size of 32. We fixed a learning rate of
0.001.
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• A minor downside of the paper is that the weights initialization method was not
specified. We initialized the weights with uniform random variables using the
Kaiming initializationmethod30 for all the layers, which is also the default method
for linear layers in PyTorch.

• For the recognition function, in order to avoid numerical instability, we suggest to
either use clamp or Sigmoid activation function to avoid spike values of zero (thus
ensuring γi < 1).

4.3 Reproducibility cost
Given that there was no mention in the paper about computational resources required,
we describe the computational cost required for running the experiments. SinceMNIST
and Fashion-MNIST are relatively small datasets, the training procedure run on CPU
took around 1 minute per epoch and 8 seconds per epoch on a Titan Xp GPU, using a
latent size of 200 units and a single hidden layer of 400 units for both the encoder and
decoder, as described in the paper. On the other hand, the VSC model training time for
the CelebA dataset was around 30 seconds per epoch on a Titan Xp GPU, using a latent
size of 800 units and two hidden layers of 2000 units also for the encoder and decoder.
Regarding memory requirements on GPU, the network trained on MNIST and Fashion-
MNIST consumed around 529MB, which scaled up to 850MB during training, while the
network trained onCelebA consumed around 637MB,which scaled up to 1322MBduring
training. In conclusion, the computational cost for running the experiments is not high,
which facilitated the reproduction of the results.

5 Results

5.1 ELBO Evaluation
We evaluated how the Variational Lower Bound (VLB) varies while changing the latent
space dimension of the models: VSC - α = 0.2, VSC - α = 0.5 and VAE (Figure 1). We
observed that in general the ELBO decreases until reaching an optimal latent dimension
and then they slowly increase as we add more latent dimensions.

(a) (b)

Figure 1. Evaluation of ELBO on the test set for the VSC trained model at varying
number of latent dimensions.

5.2 Classification Performance
We studied the classification accuracy obtained by using the latent representations as
input (Figure 2), in order to validate the authorsʼ conclusion that the Variational Sparse
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Coding learned representations improve the classification results and significantly in-
crease robustness with respect to the latent number of dimensions. We can observe
that for both MNIST and Fashion-MNIST, after surpassing the optimal latent dimension
of the VAE, the representations learned by the VSC are significantly more informative
as the latent dimension increases.

(a) (b)

Figure 2. Classifications results on the test set (for MNIST (a) and
Fashion-MNIST (b)) by varying the latent space dimensions using the model
VSC - α = 0.01 and a 2-layer fully connected neural network as base classifier.

5.3 Intepretation of sparse codes
Authors claim the interpretability of the sparse learned representations. We qualita-
tively examined the interpretation of the non-zero elements in the sparse codes recov-
ered with the VSC model by running interpolations in the sparse space varying the di-
mension with the highest absolute value (Figure 3). In addition, we observe the effect
of the latent dimensionality at capturing the image content (Figure 4).

(a) (b)

Figure 3. Reconstruction results by modifying encoding in 200-dimensional latent
space for MNIST (a) and Fashion-MNIST (b) for the model VSC - α = 0.01.

5.4 Visualization / Traversing Latent Space
We explored how sampling from the latent space distribution can allow us to obtain in-
terpretable variations in the generated images (Figure 5), and also how conditional sam-
pling produces arguably realistic new samples from the same conceptual entity (Figure
6). The traversal of the latent space is performed varying the latent codes with a high
absolute value for a given image, one at a time. We can observe that these latent codes in-
deed represent interpretable features of the datasets, such as the digits shape in MNIST,
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(a) (b)

Figure 4. Encoding and reconstruction of samples using the VSC - α = 0.01model fromMNIST (a)
and Fashion-MNIST (b) datasets with varying latent dimensions of 8, 96 and 200.

the color and shape of the clothes in Fashion-MNIST and the orientation, background
color, skin color and hair color in the CelebA results.

6 Analysis and discussion of findings

We should note that the paper we reproduced was clearly written and overall, despite
a few implementation details unspecified (batch size, number of epochs for the CelebA
training and weights initialization procedure), it is possible to replicate the results re-
ported. Moreover, we are able to validate the authors hypothesis that the VSC models
generate sparse, informative and interpretable representations.

Minor discrepancies in the results can be explained by the restricted number of training
epochs. In particular, in Figure 1, we observe a similar trend that the one shown in the
paper; however, the gap between the curves can be decreased by training the model for
larger number of iterations. Furthermore, in the log optimization files, we can easily
notice that by using only 20K iterations the model has not reached a local optimum yet.
This situation is also present during training on the CelebA dataset: we noticed that at
least 50 epochs are needed to be close to a local optimum, as it is shown in Figure 7. We
believe that authors must provide more specifications on the optimization hyperparam-
eters to facilitate the reproducibility task.
Similarly, for the classification task (Figure 2) although we were able to obtain more in-
formative representations using the VSC model with respect to VAE, the classification
accuracy can still be improved by using a higher capacity classification model, instead
of the simple classifier used in the original paper.

Many of the reviewers addressed the issue of how we can interpret the learned latent
features by the VSC-model. Although authors affirm that the model does not explicitly
induce intepretation, it certainly results into a higher expectation of interpretability in
large latent spaces, provided that the sources of variations in the observed data can be
considered sparse.

To account for the blurriness of generated images (Figures 3 and 5), we must under-
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(a) (b)

(c)

Figure 5. Traversing the latent space of the VSC - α = 0.01model trained for 11 epochs on
MNIST (a) and Fashion-MNIST (b) datasets, and 90 epochs on CelebA (c) dataset.

(a) (b)

Figure 6. Conditional sampling from VSC - α = 0.01model trained
for 11 epochs on MNIST (a) and Fashion-MNIST (b) datasets.

stand that the model capacity is limited and perhaps convolutional architecture could
drastically improve the quality of results.

7 Conclusions

Overall the paper describes in enough detail the VSC model implementation and we
must applaud the authors in their ability to convey such a complex topic in an approach-
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Figure 7. Evaluation of training and test loss of the VSC model on the CelebA
dataset

able and replicable manner. The hypothesis of using Variational Sparse Coding to ob-
tain sparse, informative and interpretable representations was confirmed by reproduc-
ing the experiments.

Further development on testing themodel and comparing it against other sparsemodels
on well known benchmarks is critical. In order to assess how interpretable the learned
latent features are, we could draw ideas from disentangled representations, to measure
the effect of sparsity in the disentanglement metric, against benchmark models such as
β-VAE or Factor-VAE.

To conclude our reproducibility report we propose the following directions for future
research and improvement of current results:

• Increase the number of iterations suggested for training themodels and re-run the
experiments using the notebooks in our repository.

• In order to improve the quality of generated images, we suggest to expand the
model capacity by either stacking more layers or trying convolutional architec-
tures for the encoder and decoder.

• Apply the model to the Disentanglement testing Sprites dataset, to measure the
effect of sparsity on a disentanglement metric.

Acknowledgments —We would like to thank to Emilien Dupont for clarifying distinct as-
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